Binary Whale Optimization Algorithm for Dimensionality Reduction
نویسندگان
چکیده
منابع مشابه
Whale Swarm Algorithm for Function Optimization
Increasing nature-inspired metaheuristic algorithms are applied to solving the real-world optimization problems, as they have some advantages over the classical methods of numerical optimization. This paper has proposed a new nature-inspired metaheuristic called Whale Swarm Algorithm for function optimization, which is inspired by the whales’ behavior of communicating with each other via ultras...
متن کاملDROP: Dimensionality Reduction Optimization for Time Series
Dimensionality reduction is a critical step in analytics pipelines for high-volume, high-dimensional time series. Principal Component Analysis (PCA) is frequently the method of choice for many applications, yet is often prohibitively expensive for large datasets. Many theoretical means of accelerating PCA via sampling have recently been proposed, but these techniques typically treat PCA as a re...
متن کاملThe Elastic Embedding Algorithm for Dimensionality Reduction
We propose a new dimensionality reduction method, the elastic embedding (EE), that optimises an intuitive, nonlinear objective function of the low-dimensional coordinates of the data. The method reveals a fundamental relation betwen a spectral method, Laplacian eigenmaps, and a nonlinear method, stochastic neighbour embedding; and shows that EE can be seen as learning both the coordinates and t...
متن کاملWhale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems
Distributed generator (DG) resources are small scale electric power generating plants that can provide power to homes, businesses or industrial facilities in distribution systems. Power loss reductions, voltage profile improvement and increasing reliability are some advantages of DG units. The above benefits can be achieved by optimal placement of DGs. Whale optimization algorithm (WOA), a nove...
متن کاملGeneralized Multilinear Model for Dimensionality Reduction of Binary Tensors
Generalized multilinear model for dimensionality reduction of binary tensors (GMM-DR-BT) is a technique for computing low-rank approximations of multi-dimensional data objects, tensors. The model exposes a latent structure that represents dominant trends in the binary tensorial data while retaining as much information as possible. Recently, there exist several models for computing the low-rank ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8101821